KMA315 Analysis 3A: Problems 2

Solutions to the problems designated by \star should be submitted by 11:00am on Wed the 23^{rd} of March 2016.

- 1. Give and justify at least one example for each of the following:
 - (i) \star a sequence $(y_n)_{n=0}^{\infty}$ of real numbers such that $\lim_{n\to\infty} y_n$ does <u>not</u> exist while $\lim_{n\to\infty} |y_n|$ does exist; (2 marks)
 - (ii) a sequence of real numbers that diverges but has at least one convergent subsequence; and
- (iii) ★ a sequence of <u>rational</u> numbers that converges to an irrational number (you may search the internet to find an example, though cite where you found it and make sure you understand the justification/explanation that you give), <u>also</u> using your example explain whether the rational numbers are a complete metric space. (3 marks)

2. ★ Let $(y_n)_{n=0}^{\infty}$ be the sequence of real numbers defined by $y_0 = 1$ and $y_{n+1} = \sqrt{3y_n}$ for all $n \in \mathbb{N}$. Show that:

- (i) $1 \le y_n \le 3$ for all $n \in \mathbb{N}$; (3 marks)
- (ii) $(y_n)_{n=0}^{\infty}$ is monotonically increasing; (3 marks)
- (iii) $(y_n)_{n=0}^{\infty}$ converges, and furthermore find the limit $\lim_{n\to\infty} y_n$. (3 marks)

3. \star Prove that if $(a_n)_{n=0}^{\infty}$ is a monotonically decreasing sequence of real numbers and $x \in \mathbb{R}$ is a cluster point of $(a_n)_{n=0}^{\infty}$ then $\lim_{n\to\infty} a_n = x$. (3 marks)

4. Establish whether the following sets are: (i) open; (ii) closed; and (iii) compact:

(Note: a subset $A \subseteq \mathbb{R}$ is compact if and only if it is closed and bounded.)

- (i) \star (0,1] = { $r \in \mathbb{R} : 0 < r \le 1$ }; (1 mark)
- (ii) $\mathbb{Z}_+ = \{1, 2, 3, \ldots\};$
- (iii) $\star \mathbb{Q} = \{ \frac{a}{b} : a, b \in \mathbb{Z} \}; (1 \text{ mark})$
- (iv) \emptyset (the empty set);
- (v) $\star \mathbb{R}$; (1 mark)
- (vi) the Cantor set (use the internet to work out what that is).

There is another question over the page...

Nicholas Ham, Room 425

- 5. Give and justify at least one example for each of the following:
 - (i) \star a sequence $(A_n)_{n=0}^{\infty}$ of open subsets of \mathbb{R} whose intersection $\bigcap_{n=0}^{\infty} A_n$ is <u>not</u> open; (3 marks)
 - (ii) a subset $A \subseteq \mathbb{R}$ such that A is a proper subset of the closure of A, ie. $A \subset \overline{A}$;
- (iii) \star subsets $A \subseteq B \subseteq \mathbb{R}$ such that A is <u>not</u> compact while B is compact; (1 mark)
- (iv) \star a sequence $(I_n)_{n=0}^{\infty}$ of nested closed intervals of \mathbb{R} such that the intersection $\bigcap_{n=0}^{\infty} I_n$ is empty. Explain why your example does not contradict the Nested Interval Property. (3 marks)